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Geometric Priors for Gaussian Process
Implicit Surfaces

Wolfram Martens, Yannick Poffet, Pablo Ramón Soria, Robert Fitch, and Salah Sukkarieh

Abstract—This paper presents an extension of Gaussian process
implicit surfaces (GPIS) by the introduction of geometric object
priors. The proposed method enhances the probabilistic recon-
struction of objects from three-dimensional (3-D) pointcloud data,
providing a rigorous way of incorporating prior knowledge about
objects expected in a scene. The key ideas, including the system-
atic use of surface normal information, are illustrated with one-
dimensional and two-dimensional examples, and then applied to
simulated and real pointcloud data for 3-D objects. The perfor-
mance of our method is demonstrated in two different application
scenarios, using complete and partial surface observations. Quali-
tative and quantitative analysis of the results reveals the superiority
of the proposed approach over existing GPIS configurations that
do not exploit prior knowledge.

Index Terms—Agricultural automation, categorization, proba-
bility and statistical methods, object detection, rgb-d perception,
segmentation.

I. INTRODUCTION

GAUSSIAN Process Implicit Surfaces (GPIS) [1] are a tool
for non-parametric probabilistic reconstruction of object

surfaces from partial and/or noisy 3D data. Interpreting an ob-
ject’s surface as the level-set of an underlying Gaussian process
(GP) in 3D allows for typical GP operations, such as proba-
bilistic inference. In particular, given a set of data points on
the surface as obtained with a 3D range sensor, GPIS yield the
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expectation and variance of the surface contours of an object
at arbitrary query points. GPIS are related to GP occupancy
maps [2], which construct a spatial GP to probabilistically map
the occupancy of a scene, but are more directly targeted at re-
constructing compact objects, exploiting the topology of bodies
with non-zero volume.

GPIS have strong potential for autonomous perception of ob-
jects because they permit rigorous probabilistic reasoning about
the geometry of closed volumes. Object perception is a funda-
mental problem in robotics that underlies a wide variety of tasks
ranging from information gathering to manipulation. Probabilis-
tic reasoning about objects is essential for robust approaches to
these tasks such as active perception and planning under un-
certainty. Further, in many instances, strong prior knowledge is
available that describes the geometric properties of objects of
interest, such as in agricultural robotics where the ability to per-
ceive fruit and other natural objects is of immense value [3], [4].
This paper presents methods for exploiting such prior knowl-
edge during reconstruction of object surfaces and occupancy
from range data using GPIS, dramatically expanding their ca-
pabilities for real-world applications.

While the concept of using geometric prior knowledge is
novel for GPIS, the use of prior shapes has already been ex-
plored in the literature on reconstruction and segmentation of
2D and 3D data. [5] and [6] employ elementary shape primi-
tives, whereas [7] and [8] use more complex prior shapes. The
methods we propose combine the well-established concept of
using prior object shapes with the flexibility and probabilistic
capabilities of GPIS.

Previous work on GPIS addresses the probabilistic recon-
struction of objects, for example in grasping under uncer-
tainty [9], [10]. In [11], GPIS are used for informative path
planning, whereas [12] proposes an active grasp planner based
on GP implicit shape potentials, which are closely related to
GPIS. Complimentary to visual data, [13] uses a tactile sensor
to enhance shape perception.

The linearity of GPs implies that gradient information can
be integrated in the regression equations equivalently to func-
tion value observations [14]–[16]. As a result, [17] enhances GP
reconstruction by integrating surface normal information com-
puted from pointclouds, whereas [9] uses tactile sensors for this
purpose. In [18] and [19], surface normal information is intro-
duced by adding points with opposite signs to the interior and
exterior of objects.

The main contribution of this paper lies in the introduction
of geometric object priors for GPIS which modify the mean
function to encode shape primitives in the prior distribution.
We propose a library of object shape primitives consisting of
spheres, ellipsoids, cylinders and infinite planes that are use-
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ful in representing natural objects. By choosing a type of ob-
ject prior with corresponding geometric parameters and GP
covariance function, essential characteristics of an expected ob-
ject can be exploited to enhance probabilistic operations such as
surface reconstruction under uncertainty. While [17] is related
to our work in that it also employs a non-zero mean function,
their mean function is represented by an additional GP, which
is inferred from the observations, instead of using a priori infor-
mation about the object shape.

In addition to the introduction of geometric priors for GPIS,
we also restate the fundamental mathematical concepts of GPIS
inference for surface observations and surface normal data in
concise form that resolves previous inconsistencies in the lit-
erature. We provide the explicit relations for two common
GPIS covariance functions, namely the Squared-Exponential
and Thin-Plate kernels. We also address the ubiquitous problem
of hyperparameter learning, and present an efficient method for
rendering object surfaces.

The paper is structured as follows. Section II provides back-
ground information on GPIS. In Section III we present the
concept of geometric object priors and our library of generic
object shapes. Section IV addresses two key components of
our implementation, and results are presented in Section V. In
Section VI we discuss the implications of our approach and
comment on future prospects building on this work.

II. GAUSSIAN PROCESS IMPLICIT SURFACES

A. Gaussian Processes

We consider scalar Gaussian processes (GPs) over
d-dimensional spaces, x ∈ Rd . A GP can be interpreted as a
distribution over functions f(x),

f(x) ∼ GP (mf (·), kf (·, ·)) , (1)

and is fully characterised by its mean mf (x) and covariance (or
kernel) function kf (x,x′) = cov(f(x), f(x′)).

Let D = {yn} for n = 1, · · · , N , be a set of noisy observa-
tions yn = f(xn ) + εn , where εn denotes independent zero-
mean Gaussian noise with intensity σN. The distribution of
f ∗ = f(x∗) at some query location x∗ follows from the joint
distribution of D and f ∗, and is given by

f ∗ ∼ N (〈f ∗〉, σ∗2), (2)

with mean and variance

〈f ∗〉 = mf (x∗) + k∗T K−1 (yD − mf ,D) , (3)

σ∗2 = k∗∗ − k∗T K−1k∗. (4)

yD ∈ RN ×1 and mf ,D ∈ RN ×1 denote the concatenation of the
observations and mean values mf (xn ), respectively, for all data
points, and the covariance matrices are given by

K ∈ RN ×N , (K)mn = kf (xm , xn ), (5)

k∗ ∈ RN ×1 , (k∗)n = kf (xn ,x∗), (6)

k∗∗ ∈ R, k∗∗ = kf (x∗,x∗). (7)

For noisy observations, the modified covariance function is
given by kN(xm ,xn ) = kf (xm ,xn ) + δmnσN

2 , where δmn =
1 if m = n and = 0 otherwise.

B. Gaussian Process Implicit Surfaces

Implicit surfaces in Euclidean space x ∈ Rd are induced by
the Rd−1-dimensional level sets of continuous functions f(x),
f(x) = c, where we set c = 0, without loss of generality. The
interior and exterior of a surface are interpreted according to

f(x)

⎧
⎪⎨

⎪⎩

> 0, if x is outside the surface

= 0, if x is on the surface

< 0, if x is inside the surface,

with different conventions about the sign in the literature.
In a physical interpretation, the level-sets implied by functions

in R3 represent the surfaces of objects with non-zero volume.
The key idea of GPIS is to let f(x) be distributed according to a
GP, so that the surface contour is also random and characterised
by the underlying process.

C. Surface normal observations

Additional to the fact that an observed point must lie on
the surface of an object, the geometry of neighbouring surface
points usually yields the direction of surface normals, which
immediately discriminate the interior from the exterior of an
object in that region. In the literature there exist two ways of
incorporating this topological information into the construction
of GPIS. In [1] and [18], the sign of the GP at the inside and
the outside of an object is triggered by adding artificial data
points with the corresponding sign. A somewhat more elegant
way of incorporating the local surface geometry is by use of the
surface normals explicitly [9], [17], as will be elaborated in the
following.

Derivatives of a GP are also Gaussian, and the covariance
between data points and derivatives is readily obtained through
differentiation of the covariance function [15],

cov

(
∂f(x)
∂xi

, f(x′)
)

=
∂k(x,x′)

∂xi
(8)

and cov

(
∂f(x)
∂xi

,
∂f(x′)
∂x′

j

)

=
∂2k(x,x′)
∂xi∂x′

j

. (9)

Note that for stationary covariance functions, k(x,x′) = k(x −
x′), as considered in this work,

cov

(

f(x),
∂f(x′)
∂x′

i

)

= −cov

(
∂f(x)
∂xi

, f(x′)
)

. (10)

As a consequence, observations as well as queries of deriva-
tives are incorporated into the general regression equation (2),
similar to additional data or query points. If each data point is
equipped with full derivative information, the resulting system
dimension is N+ = (d + 1)N . The covariance sub-matrices (7)
are extended by the corresponding covariance terms according
to equations (8) through (10). Similar to function value ob-
servations yn , gradient observations are assumed to be noisy,
∇yn = ∇f(xn ) + εn,Grad, with noise intensity σN,Grad.

Let y+
n ∈ R(d+1)×1 denote the concatenation of yn and its

gradient ∇yn . Similarly, assuming sufficient differentiability
of mf (x), m+

f ,n ∈ R(d+1)×1 denotes the concatenation of the

mean function and its gradient at xn . Lastly, let y+
D ∈ RN + ×1

and m+
f ,D ∈ RN + ×1 be the concatenated vectors for all data
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points. The joint distribution for function value and gradient at
x∗, similar to equation (2), is then given by

f+∗ ∼ N (〈f+∗〉,Σ+∗), (11)

with mean and covariance matrix

〈f+∗〉 = m+∗ + K+∗T (K+)−1
(
y+
D − m+

f ,D
)

, (12)

Σ+∗ = K+∗∗ − K+∗T (K+)−1 K+∗. (13)

The covariance matrices K+∗∗ ∈ R(d+1)×(d+1) ,K+∗ ∈
RN + ×(d+1) and K+ ∈ RN + ×N +

are computed in analogy
to k∗∗,k∗,K in (7), making use of the value-derivative and
derivative-derivative covariance functions (8) and (9).

According to the definition of interior and exterior points,
the gradient at the surface ∇f(xsurf) must point outwards; how-
ever, for general GPs and corresponding implicit surfaces, the
magnitude of the gradients at the surface is not fixed. This
can be illustrated by the fact that multiplication of f(x) by a
scalar changes the magnitude of the gradient field, leaving the
zero-level set invariant. Per definition, we will assume a fixed
magnitude of the gradient |∇f(xsurf)|2 = 1 at surface points,
such that the gradient observations ∇yn are directly given by
the surface normals with |nsurf|2 = 1.

D. Covariance functions

The covariance function k(x,x′) governs the correlation be-
tween data points drawn from a GP and hence determines the
smoothness properties of the process. In terms of GPIS, the
covariance function can thus be set to control the smoothness
properties of the surface of an object.

1) Squared-exponential covariance function: Among
various applications of GPs, the squared-exponential (SE)
covariance function experiences high popularity, partly due
to its comparably easy to interpret form, but also because it
models well the smoothness characteristics of many random
processes. Its isotropic form is given by

kSE(x,x′) = σ2 exp
(

−1
2
γ (x − x′)T (x − x′)

)

, (14)

with intensity σ and inverse-squared length scale γ = 1
L2 .

Differentiation yields the value-derivative and derivative-
derivative covariance functions according to (8) and (9),

∂kSE(x,x′)
∂xi

= −γ (xi − x′
i) kSE(x,x′), (15)

∂2kSE(x,x′)
∂xi∂x′

j

=
(
γδij − γ2 (xi − x′

i)
(
xj − x′

j

))

× kSE(x,x′). (16)

Note that these relations appear with minor errors in [9], and are
shown in corrected form here.

2) Thin-plate covariance function: A second popular kernel
function for GPIS is given by the thin-plate (TP) covariance
function which, for the 3D-case, is

kTP(x,x′) = 2d3 − 3Rd2 + R3 , (17)

with d = |x − x′|2 and hyperparameter R. Its name derives
from the mechanical properties of a thin plate, whose deforma-

tion energy is lowest for zero second-order derivatives, i.e. in its
undeformed state. Note that (17) was first proposed in [1] with
an incorrect sign, and corrected in [13].

The value-derivative and derivative-derivative covariance
functions for the TP kernel are given by

∂kTP(x,x′)
∂xi

= 6 (xi − x′
i) (d − R), (18)

∂2kTP(x,x′)
∂xi∂x′

j

= −6

(
(xi − x′

i)
(
xj − x′

j

)

d
+ δij(d − R)

)

.

(19)

A drawback of the TP kernel is that these properties can be
realised only for a limited domain of a GP (characterised by
R) [1]. It also provides no design parameters (like the SE kernel
does) to adapt it to desired surface properties.

III. GEOMETRIC OBJECT PRIORS

In most contexts it is convenient to remove the mean of a GP
by subtraction of mf , so that g(x) = f(x) − mf (x) is drawn
from a zero-mean GP with identical covariance properties as f .
We will show how non-zero mean functions can be used explic-
itly to define prior functions that model the expected geometry
of object surfaces.

A. Library of prior object shapes

1) Spherical prior: The most generic object prior for un-
known objects is a sphere of radius r. For simplicity, a spherical
prior located at μ = 0 is considered first. A suitable mean func-
tion is then given by

mS (x) =
r

2
(
xT ASx − 1

)
, (20)

with scale matrix AS = r−2I. Note that mS (x) = 0 for all
x with |x|2 = r, satisfying the zero-level set assumption for
points on the surface of a sphere centred at 0. Next, consider the
gradient of the mean function, which is given by

∇mS (x) = rASx, (21)

and satisfies the previous assumption that the gradient should
point outwards with magnitude 1 at all points on the surface.

Fig. 1 shows the 1D-prior and characteristics of the resulting
GP for an object with radius r, without (Fig. 1(a)) and after two
surface observations (Fig. 1(b)). Fig. 2 shows the reconstructed
shape of a 2D-object with spherical (circular) prior for increas-
ing numbers of observations. The inferred contour tends towards
the circular prior in regions without observations and reproduces
the correct shape with increasing accuracy as observations are
added.

2) Ellipsoidal prior: Generalisation of the spherical prior
to object shapes with non-isotropic dimensions is straight-
forward by modification of AS in the spherical prior (20).
Let a, b, c be the semi-major axes of an ellipsoid in 3D, and
AE = diag[a−2 , b−2 , c−2 ]. For any h ∈ R, the mean function

mS (x) =
h

2
(
xT AE x − 1

)
(22)
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Fig. 1. 1D-GP for spherical prior with radius r and SE-kernel (σ = 0.5 and
γ = 0.72). Thick blue lines represent the mean, dashed blue lines represent
3σ-confidence bounds and black lines represent samples from each GP. (a)
Prior object shape described by equation (20). (b) Inferred object shape after
observing two surface points

Fig. 2. Reconstructed object shape for increasing number of viewpoints (red
dashed line). The black line shows the true object shape as sampled from the
underlying GP, the shaded regions illustrate the variance in the resulting GP (dark
areas indicating high variance). Red circles mark the viewpoint locations and red
arrows represent surface normal observations. (a) Prior without observations.
(b) Single viewpoint. (c) Two viewpoints. (d) Three viewpoints

satisfies the zero-level set assumption for the surface of an
ellipsoid defined by a, b, c. However, unless a = b = c, the
magnitude-one assumption for the surface gradients will be
violated at a non-empty set of points, regardless of how h is
selected. Possible choices are, for example, setting h equal to
either of a, b, c, resulting in correct gradient magnitudes in the
corresponding direction, or setting h equal to their mean.

Fig. 3 shows the reconstruction of the surface of a car from
simulated surface observations using an ellipsoidal object prior.
Note how the non-isotropic prior helps reconstruct the car’s
surface in regions without observations, as will be discussed in
more detail in Sec. V.

3) Cylindrical prior: Cylindrical object priors are inter-
preted as the limit of an ellipsoid with one of the major axes go-
ing to infinity, resulting in a scale matrixAC = diag[a−2 , b−2 , 0]
for c → ∞, for instance. Fig. 4 shows the reconstruction of a tree
trunk using a cylindrical prior. In this example the data points
belonging to the tree trunk were manually segmented from the
remaining data points.

Fig. 3. Reconstruction of a car from simulated surface observations. (a) CAD
model of a car and ellipsoidal prior imposed. (b) Surface reconstruction using
ellipsoidal prior

Fig. 4. Reconstruction of a tree trunk using a cylindrical prior.

4) Infinite plane prior: While the introduction of implicit
surfaces was motivated to model closed surfaces, it may also be
useful to use planar GPIS priors. The mean function

mP (x) = nT x, (23)

where |n|2 = 1, describes a linear prior with planar zero-level
set. The resulting surface intersects with the origin, and its gra-
dient magnitude is 1 everywhere, thus satisfying the gradient
magnitude assumption. In particular, let n = [0, 0, 1]T , so that
mP (x) = x3 describes a linear function in 3D, with constant
gradient pointing in positive x3-direction. The zero-level set is
then given by the x1 , x2-plane, with the infinite half-volumes
for x3 < 0 and x3 > 0 interpreted as the “inside” and the “out-
side” of the object. A natural application of this prior is for
representing a ground surface in 3D-pointclouds, with positive
x3 pointing upwards.

B. General object poses

General poses of observed objects are immediately integrated
in the prior functions, as outlined in the following.

1) Translation: A translation of the object by a vector μ is
realised by shifting the mean function by an offset, mμ(x) =
m(x − μ). For example, the mean function of a spherical object
prior, translated by μ yields

mμ
S (x) =

r

2

(
(x − μ)T AS (x − μ) − 1

)
. (24)

2) Rotation: Furthermore, anisotropic objects like ellip-
soids, cylinders or planes exhibit rotational degrees of freedom
in SO(3) additionally to translation. For a mean function m(x),
the result of translation μ ∈ R3 and rotation θ ∈ SO(3) is given
by the transformed mean function mμ,θ(x) = m(Rθ(x − μ)),
where Rθ denotes the rotation matrix induced by θ. For exam-
ple, the mean for a general ellipsoid reads

mμ,θ
E (x) =

h

2

(
(x − μ)T Aθ

E (x − μ) − 1
)

, (25)

where Aθ
E = RT

θ AE Rθ. In the case of a newly observed set
of surface points and given an object prior function, μ and θ
represent a set of unknown parameters that need to be inferred,



MARTENS et al.: GEOMETRIC PRIORS FOR GPIS 377

for example via maximising the log-likelihood of the data, as
discussed in the next section.

IV. IMPLEMENTATION

This section elaborates on two key components needed for
the generation of the results presented later in Section V.

A. Learning the hyperparameters

Learning GP hyperparameters is a common task in the litera-
ture [14], [18], and we follow the usual approach of maximising
the log-likelihood of a training dataset. In the case of zero-mean
GPs, the properties of a GP are fully characterised by the param-
eters of its covariance function. Introducing object priors leads
to higher-dimensional optimisation problems, as the geometri-
cal parameters that define the prior also need to be learned.

Optimising the kernel hyperparameters using iterative meth-
ods is computationally expensive because it involves re-
computation and inversion of the covariance matrix K+ in
(12). However, for isotropic and stationary kernels, where
k(x,x′) = k(|x − x′|), the covariance matrix is invariant to
the object prior and depends only on the covariance between
observed data points. If the prior parameters of an object, i.e.
prior shape and GP kernel, are known, determining the most
likely pose reduces to a low-dimensional, inexpensive optimi-
sation problem. Similarly, if any shape parameters are unknown
(e.g., the radius of a sphere) the dimension of the optimisation
problem stays small, and K+ is unaffected.

B. Rendering of GPIS

We provide an outline of how the mean surfaces in our results
were generated by efficient region-growing across the surface
of an object, allowing us to create smooth surface plots quickly
(less than a second). While tools are available for constructing
level surfaces, such as isosurface.m in MATLAB or im-
plementations of the marching cube algorithm [20], these were
observed to be inconveniently slow. Standard implementations
of these methods take as input a volume of sampled function
values, which implies many GP evaluations for points that do
not lie on the object surface.

1) Initialisation: The proposed algorithm is initialised by
choosing a point on or near the zero-level surface. Conveniently,
such points are always available as all observed points lie on
the surface. It then generates two candidate vertices in a plane
perpendicular to the local gradient, with edge lengths of the
resulting triangle small enough that the change in function value
and gradient is small.

2) Newton update: Equation (12) allows the computation
of gradients at each candidate point, and a Newton-Raphson
method can be applied to find points closer to the level surface,
up to any desired accuracy. In our implementation, a single
Newton step was sufficient to approximate the closest point on
the zero-level. The updated vertex points are added to the mesh,
creating an initial triangular face.

3) Expanding the mesh: The algorithm then chooses one of
the edges of the initial triangle to expand the mesh outwards,
perpendicular to the local gradient direction. Similar to the initial
two candidate points, the newly created point is then updated
by a single Newton step and added to the mesh, creating a new

Fig. 5. Stages of GPIS rendering for an eggplant with frontier “colliding”.

triangular face. The current mesh is thus bounded by the set of
its outer edges, its frontier, and consecutively spreads out across
the object surface.

4) Frontier splitting and merging: As the frontier gradually
explores the entire surface, it eventually “collides” with itself,
leading to termination if the entire surface has been rendered,
or a split into two frontiers, with each continuing to explore the
remaining surface. With multiple frontiers expanding across the
surface we also need a merge action, which takes place if two
separate frontiers “collide”, merging them back into a single
one. Fig. 5 shows an example of frontier splitting during surface
construction of an eggplant.

V. RESULTS

In this section we evaluate the benefits of object priors in
two relevant applications. The performance of our approach is
compared with two state-of-the-art GPIS configurations without
priors. In particular, we will refer to:

1) NZM-SE: Non-zero constant mean > 0 with squared-
exponential kernel, similar to [9],

2) ZM-TP: Zero-mean with thin-plate kernel,
3) SP/EP-SE: Spherical/Ellipsoidal object prior with

squared-exponential kernel.
Note that ZM-TP corresponds to the approach proposed

in [1], although we take into account surface normal information
(Sec. II-C) for this and the other techniques, instead of adding
artificial data points. All GPIS hyperparameters as well as prior
shape and pose parameters for the selected prior were learned
automatically for each object as discussed in Sec. IV-A unless
stated otherwise.

In our unoptimised implementation, finding the pose
parameters (typically required online), given kernel function
and prior shape, took less than a second. Learning the kernel
hyperparameters is by far the most expensive operation, as it
involves the repeated inversion of K+ , and took up to 10 min-
utes in the considered cases, using a standard optimisation tool
(fminsearch.m) in MATLAB. If strong prior knowledge
is available, as assumed in this paper, this is cast as an offline
problem, but it could easily be sped up, for example by using
gradient-based optimisers [14].

A. Reconstruction of object surfaces

The first scenario considers GPIS reconstruction from partial
as well as complete surface observations of an object, such as ob-
tained from single or multiple viewpoints. Unlike deterministic
surface reconstruction methods, our results imply a distribution
over surfaces instead of a single solution. For illustration, we
render the zero-level mean of the inferred GPIS and indicate
standard deviation in colour, where blue indicates small and
yellow large values.



378 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

Fig. 6. Surface reconstruction of an apple from partial surface observations, colour represents uncertainty (yellow for large standard deviations). (a) Scanned
surface. (b) NZM-SE. (c) ZM-TP. (d) SP-SE (our method)

Fig. 7. Surface reconstruction of simulated car from partial surface observations, colour represents uncertainty (yellow for large standard deviations). (a) Poisson
surface reconstruction. (b) NZM-SE. (c) ZM-TP. (d) EP-SE (our method).

The first data set is a 3D-scan of an apple, acquired with
the Artec Eva 3D-scanner. The second data set is generated in
BlenSor [21] from a CAD model of a car. We use a spherical
prior for the apple, and an ellipsoidal prior for the car.

Both data sets are downsampled using the method proposed
in [22], which also provides surface normals (244 points with
surface normals for the apple and 152 for the car). For very
noisy or sparse pointclouds, surface normal computation is gen-
erally difficult. A benefit of downsampling is to increase the
relative voxel size used in surface normal computation, which
increases the stability of the surface normals (and hence the
quality of surface reconstruction). Further, this paper does not
focus on optimised GP inference for large data sets, which in-
volves the inversion of the covariance matrix (K+ ∈ R4N ×4N

for 3D-pointclouds). Hence, we chose smaller data sets simply
for speed, accounting for the ubiquitous trade-off between speed
and accuracy using GPs.

The computational complexity of GP inference and the re-
liability of surface normal computation are general challenges
to GPIS using surface normals, and not specific to the use of
geometric priors. We hence do not discuss these effects in detail,
and observe that all our data sets provide reliable surface normal
information for the chosen resolutions.

While the test data sets consist of observations across the
entire surface of the objects, we are particularly interested in
surface reconstruction for partial observations. Figs. 6 and 7
present results for partial surface observations of the apple and
the car, respectively, using NZM-SE, ZM-TP and SP/EP-SE. In
Fig. 6(b), NZM-SE reproduces only a degenerate version of the
fruit, with a significant part of its volume missing. This effect
is to be expected, as the GP is biased towards positive values in
regions without observations. Conversely, reconstruction with
ZM-TP results in an almost opposite behaviour (Fig. 6(c)). In-
stead of reducing the fruit’s volume, the surface expands out, as
a direct result of the thin-plate covariance function attempting
to minimise the second-order derivatives of the underlying GP.
Fig. 6(d) shows how for SP-SE, in regions with no data, the re-
constructed surface adapts to the spherical prior shape (similar

Fig. 8. Surface reconstruction of car with full data. (a) EP-SE (our method).
(b) ZM-TP

to Fig. 2), yielding a reasonable and usable reconstruction of the
fruit. Similar results can be observed for the car, shown in Fig. 7.
For reference, Fig. 7(a) shows the Poisson surface reconstruc-
tion [23] of a simulated pointcloud of size 16994 for the entire
surface of the car. EP-SE generates a reasonable reconstruction
from partial observations, whereas the other methods produce
degenerate results.

Reconstruction for the entire data sets returned reasonable
results for all techniques in both test cases, but close inspection
of the car’s surface reconstruction using ZM-TP (Fig. 8(b))
reveals a general limitation of the thin-plate covariance function.
Its single hyperparameter R, which is usually fixed by the scene
dimensions, allows no variation of the smoothness properties
of a surface. As a result, the mean surface in Fig. 8(b) exhibits
an undesired edginess with high uncertainty even close to the
observations.

B. Probabilistic occupancy maps

The second scenario is to use GPIS to build probabilistic occu-
pancy maps (POMs) [24]. POMs are used in a variety of robotics
applications, such as path planning and exploration, and are
critical in representing uncertainty about occupied or unoccu-
pied space from incomplete observations. Using the convention
where object interiors have function values < 0, the probability
of a point being occupied is given by P (f ∗ < 0). As illus-
trated in Fig. 9, it is given by the cumulative distribution func-
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Fig. 9. Evaluation of occupancy probabilities at two query locations (black
crosses) for a 1D-GP, based on three observations of f (red stars).

Fig. 10. Ground truth eggplant model. (a) Model surface. (b) True occupancy

tion of a Gaussian with mean 〈f ∗〉 and variance σ∗2 , evaluated
at zero.

Fig. 10 shows the surface and corresponding ground truth
occupancy map of an eggplant model; Figs. 11 and 12 show the
surface and POM resulting from simulated complete and partial
surface observations with 187 data points and surface normals
in the full data set. The resulting 3D-POMs are evaluated by il-
lustration of the horizontal plane at x3 = 0. We compare results
obtained using an elliptical prior with squared exponential ker-
nel (EP-SE) against the ZM-TP configuration. In the TP-kernel,
R was set manually to achieve good surface reconstruction
results.

Fig. 11 shows results for observations across the entire surface
of the object, Figs. 11(a) and 11(b) for ZM-TP, and Figs. 11(c)
and 11(d) for EP-SE. In [1] it was illustrated how the TP-kernel
is superior to the SE-kernel in terms of surface reconstruction for
zero-mean functions. However, in the same reference it can also
be observed that the resulting variance increases abruptly, even
very close to the observations. As a consequence, the POM in
Fig. 11(b) exhibits high uncertainty close to the object surface.
Conversely, Fig. 11(d) reveals how using an ellipsoidal prior
with SE-kernel returns a POM with much higher confidence,
corresponding to the true shape and occupancy of the object. It
is worth noting how the ellipsoidal prior creates a minor bulge in
a region of few observations at the bottom of the mean surface,
indicating that a more complex geometric prior might yield
an improved result. However, Fig. 11(d) illustrates the great
advantage of using GPIS in this context, as poorly reconstructed
regions such as this are highlighted as areas of high uncertainty.

In Fig. 12 we analyse the behaviour of the same methods
for partial observations. The elliptical prior function includes
prior knowledge about the object’s geometry, resulting in the
reconstruction of the entire expected object occupancy, even in
regions without surface observations (Fig. 12(d)). Fig. 12(b), on
the other hand, illustrates how for ZM-TP the true occupancy
is poorly reconstructed, with uncertainty increasing sharply in
regions without surface observations.

Fig. 11. Reconstruction and POM from complete surface observations. (a)
ZM-TP surface reconstruction. (b) ZM-TP POM. (c) EP-SE surface reconstruc-
tion. (d) EP-SE POM (our method)

Fig. 12. Reconstruction and POM from partial surface observations. (a) ZM-
TP surface reconstruction. (b) ZM-TP POM. (c) EP-SE surface reconstruction.
(d) EP-SE POM (our method)

TABLE I
POM EVALUATION USING THE SUM OF SQUARED DIFFERENCES

Complete observations Partial observations

NZM-SE 354.2828 310.8350
ZM-TP 407.8959 702.1192
EP-SE 29.4521 191.0672

Table I provides a quantitative analysis of the EP-SE tech-
nique against ZM-TP and NZM-SE. As an evaluation metric,
we use the sum of squared differences (SSD) between the ground
truth occupancy map and the resulting POM. As can be seen in
Figs. 11 and 12, the large improvement in the SSD score for non-
constant prior functions stems from two reasons: 1) For partial
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observations, prior-less methods fail to reproduce significant
parts of the object volume; 2) For partial and full observations,
the use of a prior decreases uncertainty in regions further away
from the observations, exploiting the prior information about
the object’s shape.

Remark: Determining suitable hyperparameters for the prior-
less NZM-SE technique was tedious as there is no established
selection method in the literature for the GP mean value. Joint
optimisation for the mean and kernel hyperparameters was
sensitive to initialisation, and the parameters that globally max-
imised the data-likelihood yielded a meaningless GPIS re-
construction, with mean close to zero and very short length-
scales. We achieved suitable results using a hand-engineered
combination of data-likelihood maximisation and manual tun-
ing. In comparison, optimisation for EP-SE and SP-SE was
robust and unambiguous.

VI. DISCUSSION AND FUTURE DIRECTIONS

This paper proposes the use of object prior functions to en-
hance the probabilistic surface reconstruction from noisy or
incomplete 3D data using GPIS. The results demonstrate how
our approach, in combination with the systematic exploitation
of surface normal information, overcomes major limitations of
existing GPIS techniques. In addition to the superior results
in surface reconstruction and probabilistic occupancy mapping,
our approach resulted in stable and unambiguous hyperparam-
eter optimisation. While ZM-TP, depending on only a single
hyperparameter R, did not exhibit the same sensitivity as NZM-
SE, the existing literature relies on the insertion of artificial
data points. It remains unclear how this should be implemented
rigorously for general datasets, in particular for incomplete ob-
servations.

Besides the applications discussed here we advocate several
problems to be investigated in follow-up research.

1) Outlier removal: Most previous work on GPIS
assumed structured scenarios and pre-segmented
pointclouds, where the given data belongs only to one
object of interest. In more realistic scenarios the point-
cloud data is expected to include data belonging to other
objects or general noise. Geometric object priors would
be a strong tool to discriminate the relevant data from
outliers.

2) Multi-object segmentation: In cluttered scenes with mul-
tiple objects, associating data to different objects is in-
herent to higher-level tasks such as object detection or
classification. In our ongoing research we have produced
preliminary results for probabilistic segmentation of clut-
tered scenes using geometric GPIS priors. In this context
it is also interesting to investigate inter-object relation-
ships, such as walls being vertical to the ground, similar
to [25].

3) Expanding prior libraries: It is interesting to explore more
sophisticated mean functions to produce priors for more
complex object shapes. In particular, we plan to inves-
tigate the construction of composite priors, built from
multiple shape primitives, such as those proposed in this
paper. Similar approaches exist in the literature for surface
reconstruction [6], however none of these consider GPIS.
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